Location accuracy of long distance VLF lightning location network
نویسندگان
چکیده
An experimental VLF WorldWide Lightning Location (WWLL) network is being developed to provide realtime locations of cloud to ground lightning discharges occurring throughout the globe. This network has expanded from a limited number of stations in the Western Pacific to its current state of 11 stations, in most longitude sectors, with additional stations planned in the near future. As part of the initial testing phase of the WWLL the network has operated in a simple mode, sending the station trigger times into a central processing point rather than using the sferic Time of Group Arrival (TOGA). During this initial stage, a significant quantity of lightning location data has been collected, some of which is being applied to research questions. In this paper the operation of the WWLL network is described, and the location accuracy of the pre-TOGA WWLL network is characterised. This is performed by contrasting commercial lightning location data from an Australian network, Kattron, over 2 days in January 2002, with 4 WWLL stations covering the same region. It was found that there were 426 matched lightning events, corresponding to lightning discharges with large lightning return stroke peak currents (mean absolute peak current of ∼26 kA compared with ∼12 kA for all Kattron events). By considering the random errors in the difference locations between the matching lightning events, an appropriate Gaussian timing error for the WWLL network of receiving stations is determined, and hence an estimate for the global location errors for the existing 11-station network is found. The “worst-case” global location error for the existing network ranges spatially from 7.5–100 km, with the global median being 15 km, and the global mean 30 km. When the TOGA method is implemented, the station timing errors will decrease, allowing for an increase in the location accuracies. Hence, the location accuracy estimates determined in this paper will be very conservative for the future WWLL network employing the TOGA technique.
منابع مشابه
Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade
An experimental VLF World-Wide Lightning Location (WWLL) network has been developed through collaborations with research institutions across the globe. The aim of the WWLL is to provide global real-time locations of lightning discharges, with >50% CG flash detection efficiency and mean location accuracy of <10 km. While these goals are essentially arbitrary, they do define a point where the WWL...
متن کاملMethod to Improve Location Accuracy of the GLD360
An algorithm change to the central processor of the network producing the GLD360 dataset is proposed to reduce the population of events with large (>5 km) location errors. In this study, we compare the data reprocessed using the proposed algorithm change to that from the realtime GLD360 dataset. The relative location accuracy using the National Lightning Detection Network as a reference is eval...
متن کاملEVALUATION OF PEAK CURRENT POLARITY RETRIEVED BY THE ZEUS LONG RANGE LIGHTNING MONITORING SYSTEM CARLOS A. MORALES Departamento de Ciências Atmosféricas Universidade de São Paulo, São Paulo, Brazil
This study presents the first assessment of a newly developed polarity retrieval scheme augmenting a Very Low Frequency (VLF) long-range lightning detection network (named ZEUS). The polarity scheme uses the Extremely Low Frequency (ELF) in conjunction with the VLF waveform. The measured ELF signal is compared with simulated ELF signal to extract the polarity sign. This comparison also produces...
متن کاملDetection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study
An experimental Very Low Frequency (VLF) World-Wide Lightning Location Network (WWLLN) has been developed through collaborations with research institutions across the world, providing global real-time locations of lightning discharges. As of April 2006, the network included 25 stations providing coverage for much of the Earth. In this paper we examine the detection efficiency of the WWLLN by co...
متن کاملWhistler intensities above thunderstorms
We report a study of penetration of the VLF electromagnetic waves induced by lightning to the ionosphere. We compare the fractional hop whistlers recorded by the ICE experiment onboard the DEMETER satellite with lightning detected by the EUCLID detection network. To identify the fractional hop whistlers, we have developed software for automatic detection of the fractional-hop whistlers in the V...
متن کامل